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Abstract. We study the link between symmetry reductions and constraints of the Kadomtsev–
Petviashvili equations in terms of the tau function. We propose a generalization—adapted
to non-zero boundary conditions—of the standard constraints, and show a particular class of
solutions (solitons).

1. Introduction

In recent years, considerable interest has been shown in non-standard reductions of the
Kadomtsev–Petviashvili (KP) hierarchy, so-calledk-constraints [1–3]. These reductions are
a generalization of the standard KP reductions (of which the KdV equation is the best-known
example) explaining for instance how the AKNS system may be viewed as a reduction of
the KP hierarchy (it is a 1 constraint).

It is not difficult to show a connection between this type of reduction and a so-called
symmetry constraint [3, 4]. This link has, however, not been fully explained: it can be
proven that thek constraint always implies a symmetry constraint (constraining thekth
flow to be equal to a ‘squared eigenfunction’ symmetry); the converse, however, does
only hold in the case of zero boundary conditions for all the fields involved [4]. Since
it is well known that, for example, the AKNS system has so-called dark soliton solutions
(‘dark’ meaning non-zero boundary conditions), it is worth investigating the precise link
between these two types of reductions in the case of non-vanishing boundary conditions
and if possible, to generalize the constraints to this situation.

To accomplish this task we shall first discuss a number of properties for a bilinear
potential �(q, r) introduced in [5], associated with KP eigenfunctionsq and adjoint
eigenfunctionsr. Very recently, some of these properties—notably the connection between
� and vertex operators in Sato theory—have been discussed by other authors [6]. In the
present paper we show that this potential plays the role of a symmetry on the level of the
KP tau functionτ [7] (i.e. the productτ� is a symmetry for the bilinear KP equations).
The KP bilinear identity [7–9] will be shown to give rise to a compact proof of this property
for the entire hierarchy. It will also be seen that this potential isalways the ratio of two
KP tau functions. In these proofs a number of results obtained independently from [6]
will be presented and proven explicitly. These proofs bring crucial elements to proofs of
subsequent theorems presented in this paper. For example, a practical recipe and an explicit
expression for the potential in the case of the KP wavefunctionsψ(t, λ) andψ∗(t, λ) (in
terms of the KP tau function and the spectral parameter) are given. These results will prove
useful later on.
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After giving the definition of the (m-vector) k constrained KP hierarchy, we shall use
the bilinear formulation of this reduction to show its equivalence with symmetry constraints
on the tau function:τtk = τ�. We shall see that this connection between thek constraint
and the symmetry constraint allows for a geometric interpretation of the constraints. As the
physical variableu is but the second logarithmic derivative of the tau functionτ , we shall
see that this connection between the symmetry and constraints leaves room for a generalized
k constraint. Such a generalization is introduced in the last section of this paper. Since it is
very similar to the originalk constraint, a bilinear formulation can be found by analogy to
the standard case, the solutions we shall give are, however, of an entirely different nature
than the bidirectional Wronskians obtained for the standard case in [10]. We limit ourselves
to discussing the nature of the soliton solutions and find that they are ‘pk+c/p = qk+c/q ’-
reductions of the KPN -soliton solutions.

2. The KP hierarchy and symmetries

In this section we shall briefly review the Sato framework underlying the KP hierarchy
as well as the tau function approach [7–9]. In this theory, the KP hierachy of nonlinear
partial differential equations, is described with the help of the (pseudodifferential) gauge
operatorP = 1 + w1∂

−1 + w2∂
−2 + · · · (the coefficientswj depend on the variable

t = (t1 = x, t2, t3, . . .)) which is required to satisfy Sato’s equation (atn derivative is
denoted by a subscriptedtn):

Ptn = −(Ln)−P. (1)

The Lax pseudodifferential operatorL is defined byL ≡ P∂P−1 ≡ ∂+u2∂
−1+u3∂

−2+· · ·.
The functionsψ andψ∗ defined byψ(t, λ) ≡ P expξ(t, λ) andψ∗(t, λ) ≡ P ∗−1 expξ(t, λ)
with ξ(t, λ) =∑n>1 λ

ntn then satisfy:

Lψ = λψ L∗ψ∗ = λψ∗ (2)

ψtn = Bnψ ψ∗tn = −B∗nψ∗. (3)

We shall call them wavefunctions and adjoint wavefunctions. The time evolutions of the
wavefunctions are governed by the differential operatorsBn defined as the differential part
of Ln (for exampleB1 = (L)+ = ∂x, B2 = (L2)+ = ∂2

x + 2u2, . . .). A ∗ denotes the formal
adjoint (∂∗ = −∂ and(AB)∗ = B∗A∗).

The linear equations (2, 3) are compatible under the conditions:

Ltn = [Bn,L] and
∂Bm

∂tn
− ∂Bn
∂tm
= [Bn, Bm] ∀n,m. (4)

The latter equation (4) (forn = 2, m = 3) leads to the KP equation in the fieldu2 (as the
entire hierarchy can be expressed in this variable we shall simply denote it byu):

(4ut3 − 12uux − u3x)x − 3u2t2 = 0. (5)

The set of equations found from the compatibility conditions (4) is called the KP hierarchy
after its basic member (5).

From Sato’s equation (1) and the definition of the KP wavefunctions, it can be shown
that the KP wavefunctions satisfy the following bilinear identity [8]:

Resλ=∞[ψ(t, λ)ψ∗(t ′, λ)] ∀t, t ′. (6)
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Equation (6) provides the key to a connection with the bilinear (Hirota) description of the
KP hierarchy. It can be shown there exists a so-called tau functionτ(t) such that the KP
wavefunctions have the following representation:

ψ(t, λ) = τ(t − ε(λ))
τ (t)

expξ(t, λ) ψ∗(t, λ) = τ(t + ε(λ))
τ (t)

exp−ξ(t, λ). (7)

Here we have used the notationε(λ) = (λ−1, λ−2/2, λ−3/3, . . .).
The bilinear identity (6) then becomes:

Resλ[τ(t − ε(λ))τ (t + ε(λ)) expξ(t − t ′, λ)] = 0. (8)

This single equation for the KP tau functionτ is equivalent to an infinite number of partial
differential equations generated by:

e
∑∞

i=1 yiDi

∞∑
j=0

pj (−2y)pj+1(D̃)ττ = 0 ∀y. (9)

The Schur polynomialspi(t) are defined by
∑∞

i=0pi(t)λ
i = expξ(t, λ). Di is the well-

known Hirota operator with respect toti [11].
The simplest equation among the equations (9) is the Hirota form of the KP equation

(5):

(4D1D3− 3D2
2 −D4

1)τ · τ = 0 (10)

whereu andτ are related to each other byu = ∂2
x logτ .

The linear equations for the time-evolutions can also be written under the form of a
residue; letq satisfy the linear equationsqtn = Bnq (although it isnot required to satisfy
an eigenvalue problem as, for example, (2), we shall call this an ‘eigenfunction’) then the
following relation holds [7]:

Resλ[λψ(t, λ)ψ
∗(t ′, λ)q(t − ε(λ))] = 0. (11)

Introducingρ by q = ρ/τ , one can rewrite this equation:

Resλ[λρ(t − ε(λ))τ (t + ε(λ)) expξ(t − t ′, λ)] = 0 (12)

which are known as the modified KP equations. There exists an alternative (but equivalent)
formulation of the linear equationsqtn = Bnq, namely [10]:

Resλ[λ
−1ψ(t, λ)ψ∗(t ′, λ)q(t ′ + ε(λ))] = q(t). (13)

Analogously, a functionr (‘adjoint eigenfunction’) satisfying the adjoint time-evolution
equations−rtn = B∗nr satisfies the following equations:

Resλ[λψ(t, λ)ψ
∗(t ′, λ)r(t ′ + ε(λ))] = 0 (14)

Resλ[λ
−1ψ(t, λ)ψ∗(t ′, λ)r(t − ε(λ))] = r(t ′). (15)

Given a solutionq to the linear equationsqtn = Bnq and a solutionr to the adjoint
linear equationsrtn = −B∗nr, it is not difficult to see that thetn derivative of the productqr
is always a totalx derivative (Bn =

∑n
j=1 bn,j ∂

j
x ):

(qr)tn =
( n∑
j=1

j∑
i=1

(−1)i+1(rbn,j )(i−1)xq(j−i)x

)
x

≡ (An(q, r))x. (16)

Hence, the idea of defining a ‘potential’�(q, r) by the differential [5]:

d� ≡
∑
n>1

An(q, r)dtn = qr dx + (qxr − qrx) dt2+ · · · . (17)
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(From (4), it is possible to check that d� is a total differential, i.e.(�tn)tm = (�tm)tn .) The
potential�(q, r) is only defined modulo an arbitrary integration constant (independent of
x, t2, t3, . . .).

For example, let us compute�(ψ(t, λ), ψ∗(t, λ)) in the special case of the constant tau
function (u = 0). Then one hasBn = ∂nx and� =∑n>1 ntnλ

n−1+ C. We shall generalize
this result to non-constant tau functions later.

Since we shall be working in a tau function formalism, it is necessary to have some
knowledge concerning the action of a shift operator (t → t± ε(k)) on such a potential. The
key result is:

Property 1.Denoting�(q, r) by �(t):

�(t − ε(k)) = �(t)− k−1q(t)r(t − ε(k)) (18)

�(t + ε(k)) = �(t)+ k−1q(t + ε(k))r(t). (19)

Proof. Since (18) and (19) are the same identity, we shall only prove (18). Taking
t ′ = t − ε(k) one finds that equation (12) implies:

τ(t)ρ(t − ε(k))+ k−1ρx(t)τ (t − ε(k))− ρ(t)τ (t − ε(k))− k−1ρ(t)τx(t − ε(k)) = 0 (20)

or equivalently:

q(t − ε(k)) = q(t)− k−1qx(t)+ k−1q(t)

(
τx(t − ε(k))
τ (t − ε(k)) −

τx(t)

τ (t)

)
. (21)

Similarly, one finds forr(t) the relation:

r(t − ε(k)) = r(t)− k−1rx(t − ε(k))+ k−1r(t − ε(k))
(
τx(t)

τ (t)
− τx(t − ε(k))
τ (t − ε(k))

)
. (22)

Making use of equation (21),�(t − ε(k)) becomes:

�(t − ε(k)) =
∫ x

q(t − ε(k))r(t − ε(k))

=
∫ x

[
q(t)− k−1qx(t)+ k−1q(t)

(
τx(t − ε(k))
τ (t − ε(k)) −

τx(t)

τ (t)

)]
r(t − ε(k)).

(23)

Using relation (22) to simplify the last term in the previous expression, one has:

�(t − ε(k)) =
∫ x

[q(t)− k−1qx(t)]r(t − ε(k))
−q(t)[r(t − ε(k))− r(t)+ k−1rx(t − ε(k))]
=
∫ x

q(t)r(t)− k−1[qx(t)r(t − ε(k))+ q(t)rx(t − ε(k))]
= �(t)− k−1q(t)r(t − ε(k)) (24)

which proves relation (18). �

Since the only function invariant under a shiftt → t ± ε(k) is constant, these formulae
(18), (19) provide us with a characterization of� and a practical recipe for finding�(q, r)
from q andr:

�(q, r) = f (t)⇔ f (t − ε(k)) = f (t)− k−1q(t)r(t − ε(k)). (25)

As an example of this characterization, we shall show the following expressions:



Symmetry reductions and a generalized constraint 6929

Property 2.

�(ψ(t, λ), r) = λ−1ψ(t, λ)r(t − ε(λ))+ C (26)

�(q,ψ∗(t, λ)) = −λ−1ψ∗(t, λ)q(t + ε(λ))+ C. (27)

To make use of characterization (25) in the case (26), one needs to show (using the
representation (7) ofψ(t, λ) in terms of the KP tau function andr = σ/τ ):

(k − λ)σ(t − ε(λ)− ε(k))τ (t)− kσ(t − ε(λ))τ (t − ε(k))
+λσ(t − ε(k))τ (t − ε(λ)) = 0. (28)

Taking t ′ = t − ε(k1)− ε(k2) in the bilinear modified KP equation (14), one has:

Resλ

[
λτ(t − ε(λ))σ (t − ε(k1)− ε(k2)+ ε(λ))

(
k2

1− λ/k1
− k1

1− λ/k2

)]
= 0 (29)

or explicitly:

k1τ(t − ε(k1))σ (t − ε(k2))− k1τ(t)σ (t − ε(k1)− ε(k2))

−k2τ(t − ε(k2))σ (t − ε(k2))+ k2τ(t)σ (t − ε(k1)− ε(k2)) = 0. (30)

But this is just equation (28) withλ = k1 andk = k2. The formula (27) is verified just as
easily. �

Formulae (26) and (27) can be explicitly written as (q = ρ/τ, r = σ/τ ):

�(ψ(t, λ), r) = λ−1σ(t − ε(λ))/τ(t) expξ(t, λ)+ C (31)

�
(
q,ψ∗(t, λ)

) = −λ−1ρ(t + ε(λ))/τ(t) exp−ξ(t, λ)+ C. (32)

Plugging the formulae (26) and (27) (atC = 0 with this potential written as�0) in the
alternative modified KP equations (13) and (15), one finds:

Resλ[ψ(t, λ)�0(q(t
′), ψ∗(t ′, λ))] = −q(t) (33)

Resλ[ψ
∗(t ′, λ)�0(ψ(t, λ), r(t))] = r(t ′). (34)

An important instance of such a potential is given by the choice ofψ(t, λ) as q and
ψ∗(t, λ) asr; in this special case the associated potential can be expressed in terms of the
tau functionτ and the spectral parameterλ as:

Property 3.

�(ψ(t, λ);ψ∗(t, λ)) =
∞∑
n=1

τtn

τ
λ−n−1+

∞∑
n=1

ntnλ
n−1+ C (35)

whereC is an arbitrary constant.

Proof. Let us check that the right-hand side of (35) satisfies equation (18). Using the
representation ofψ andψ∗ in terms of the tau function, one finds this reduces to:

(k − λ)
∞∑
n=1

(τ (t − ε(k))τtn (t)− τ(t)τtn (t − ε(k)))λ−n−1

= τ(t − ε(λ))τ (t + ε(λ)− ε(k))− τ(t)τ (t − ε(k)). (36)

It is easy to check that:
∞∑
n=1

λ−n−1τtn (t) = lim
µ→λ

τ (t − ε(λ)+ ε(µ))− τ(t)
λ− µ (37)
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and hence also:
∞∑
n=1

λ−n−1τtn (t − ε(k)) = lim
µ→λ

τ (t − ε(k)− ε(λ)+ ε(µ))− τ(t − ε(k))
λ− µ . (38)

Using these two equalities, the left-hand side of equation (36) becomes:

lim
µ→λ

k − λ
λ− µ(τ(t − ε(λ)+ ε(µ))τ (t − ε(k))− τ(t − ε(k)− ε(λ)+ ε(µ))τ (t)). (39)

Taking t = x + ε(k1) and t ′ = x − ε(k2)− ε(k3) in the KP bilinear identity (8), one finds:

(k2− k3)τ (x)τ (x + ε(k1)− ε(k2)− ε(k3))− (k1− k3)τ (x + ε(k1)− ε(k2))τ (x − ε(k3))

+(k1− k2)τ (x + ε(k1)− ε(k3))τ (x − ε(k2)). (40)

Relabellingx → t , k1→ µ, k2→ λ andk3→ k, this can be written as:

(k − µ)[τ(t − ε(λ)+ ε(µ))τ (t − ε(k))− τ(t − ε(k)− ε(λ)+ ε(µ))τ (t)]
= (λ− µ)[τ(t + ε(µ)− ε(k))τ (t − ε(λ))− τ(t)τ (t + ε(µ)− ε(λ)− ε(k))]

(41)

and hence the limit (39) becomes:

lim
µ→λ

k − λ
k − µ(τ(t + ε(µ)− ε(k))τ (t − ε(λ))− τ(t)τ (t + ε(µ)− ε(λ)− ε(k)))

= τ(t + ε(λ)− ε(k))τ (t − ε(λ))− τ(t)τ (t − ε(k)). (42)

This proves that the representation (35) satisfies the characterization (18). �
Representation (35) could also have been obtained from (26), by choosingr = ψ∗(t, µ),

C = 1/(λ− µ) and taking the limitµ→ λ.
It is well known (and for that matter easy to check) that the ‘squared eigenfunction’

(qr)x is a symmetry for the KP equation (5):u + η(qr)x satisfies the KP equation (5) up
to first order inη. Sinceu = ∂2

x logτ , on the level of the tau function this corresponds to:

u+ η(qr)x ↔ τ expη
∫ x

qr = τ + ητ
∫ x

qr +O(η2). (43)

Whence, the following theorem.

Theorem 1.The productτ �(q, r) is a symmetry for all KP equations, i.e.τ + ητ�(q, r)
satisfies the KP bilinear identity up to first order inη:

Resλ[τ(t − ε(λ))τ (t + ε(λ))(�(t − ε(λ))+�(t ′ + ε(λ)))eξ(t−t ′,λ)] = 0. (44)

It is easy to prove this property by substituting the relations (18), (19) and using the KP
bilinear identity together with the alternative representation of the modified KP equations
(13) and (15). �

It is also immediately clear from equation (44), thatτ(�(q, r)+C+∑n cntn) is another
symmetry of KP. The constantC corresponds to the invariance of the bilinear KP identity
under a rescaling of the tau function; the symmetryτ

∑
n cntn corresponds to a multiplication

(to the right) of the gauge operatorP by a constant coefficient operator (which leaves Sato’s
equation (1) invariant). This is another way of saying that the bilinear KP equations (9) are
invariant under the transformationτ → τ exp

∑
n>1 cntn.

One can show that an even stronger property holds for the productτ̂ ≡ τ�(q, r);
Theorem 2.τ̂ is a KP tau function:

Resλ[τ̂ (t − ε(λ))τ̂ (t + ε(λ))eξ(t−t ′,λ)] = 0. (45)
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Proof. Substitutingτ̂ = τ � , using properties (18) and (19), the KP bilinear identity (8)
and the (alternative) modified KP identities (13), (15), this reduces to:

�(t)−�(t ′) = Resλ[λ
−2ψ(t, λ)ψ∗(t ′, λ)r(t − ε(λ))q(t ′ + ε(λ))]. (46)

Using the relations (26) and (27) (atC = 0), the right-hand side is seen to equal:

−Resλ[�0(q(t
′), ψ∗(t ′, λ))�0(ψ(t, λ), r(t))] ≡ I (t, t ′). (47)

To compute this residueI (t, t ′), let us calculate

∂tn∂t ′mI (t, t
′) = (differential operator acting on) Res

[
ψ(t, λ)ψ∗(t ′, λ)

] = 0. (48)

Hence we see thatI (t, t ′) = f (t) + g(t ′). Explicitly computingI (t, t ′ = t) with the help
of formulae (31) and (32), one findsI (t, t ′ = t) = 0; henceI (t, t ′) = f (t)− f (t ′). Since

[∂znI (t − z, t + z)]z=0 = −2∂tnf (t) = −Resλ[�0(q(t), ψ
∗(t, λ))�0,tn (ψ(t, λ), r(t))]

+Resλ[�0,tn (q(t), ψ
∗(t, λ))�0(ψ(t, λ), r(t))]. (49)

Since by definition∂tn�(u, v) = An(u, v) ≡
∑n−1

i,j=0 aijuixvjx (see (17)), we have

−2∂tnf (t) = −
∑
i,j

aij Resλ[∂
i
xψ(t, λ)�0(q(t), ψ

∗(t, λ))]∂jx r(t)

+
∑
i,j

aij ∂
i
xq(t)Resλ[∂

j
xψ
∗(t, λ)�0(ψ(t, λ), r(t))]

=
∑
i,j

aij qixrjx +
∑
i,j

aij qixrjx = 2An(q, r) = 2∂tn�(q, r) (50)

where we have used (33) and (34). We may conclude thatf (t) = −�(q, r). �
This proof is very similar to the proof of theorem 1 in [12].
Theorem 2 states that one can always write�(q, r) as a ratio of two tau functions:

�(q, r) = τ̂ /τ . For instance, in the case of the Wronskian-type solutionq =
ρ/τ , r = σ/τ with σ = W [ϕ1, . . . , ϕN−1], τ = W [ϕ1, . . . , ϕN−1, ϕN ] and ρ =
W [ϕ1, . . . , ϕN−1, ϕN, ϕN+1] one finds τ̂ = W [ϕ1, . . . , ϕN−1, ϕN+1 + CϕN ], again a KP-
type Wronskian. In the case of the KP wavefunctionsψ and adjoint wavefunctionsψ∗, τ̂
can be written as:

lim
µ→λ

τ (t + ε(µ)− ε(λ))eξ(t,λ)e−ξ(t,µ) − τ(t)
λ− µ = lim

µ→λ
[1−X(λ,µ)]τ(t)

µ− λ
= lim

µ→λ
exp[−X(λ,µ)]τ(t)

µ− λ (51)

(whereX(p, q) is the well-known vertex operator) which is a KP tau function as explained
in [8]. In general�(ψ(t, λ), ψ∗(t, µ)) can be written with the help of the vertex operator
X(λ,µ) acting onτ .

The first theorem is actually a special case of the second one, since� is only defined
up to a constant, we have just seen thatτ̂ +Cτ is a KP tau function. Henceτ + ητ̂ solves
the bilinear KP equation up to all orders ofη (η = C−1)!

3. Constraints and symmetry reductions

The (m-vector)k constrained KP hierarchy [1, 2] is the reduction of KP obtained by imposing
the following condition on the Lax operatorL:

Lk = Bk +
m∑
i=1

qi∂
−1ri (52)
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for some positive integerk(1, 2, . . .), where the 2m auxiliary functionsqi andri satisfy the
KP linear equations

qi,tn = Bnqi ri,tn = −B∗nri ∀n, i : 1 . . . m. (53)

The constraint (52) reduces the(2+ 1)-dimensional KP equations to integrable(1+ 1)-
dimensional systems. The simplest example is the casek = 1 andm = 1, where relation
(52) becomes:

∂ + u2∂
−1+ u3∂

−2+ · · · = ∂ + qr∂−1− qrx∂−2+ · · · (54)

from which we have thatu2 = qr. Equations (53) (atn = 2) become:

qt2 = q2x + 2q2r − rt2 = r2x + 2qr2 (55)

which is easily recognized as the AKNS system.
In [10, 13, 12, 14], a general class of solutions was described by using several direct

methods one of them using the bilinear formulation of constraint (52) [2]:

Resλ[λ
kψ(t, λ)ψ∗(t ′, λ)] =

m∑
i=1

qi(t)ri(t
′). (56)

These solutions are represented using bidirectional Wronskians (for the functionsτ , ρi = τqi
andσi = τri).

It is well known [3] that the constraint (52) implies:

utk =
m∑
i=1

(qiri)x. (57)

This expression is called a symmetry constraint since both the left- and right-hand side
of the equality are symmetries of the KP equation (5). The converse statement (symmetry
constraints implyk constraints) does not hold as we shall see when considering a generalized
constraint; the reason being the fact that there is an underlying more fundamental relation
for the tau function of which equation (57) is a mere differential consequence. Let us now
derive this relation.

It was established in [1, 2] that the relation (52) is equivalent to (cf also equation (56)):

m∑
i=1

qiri,jx = Resλ[λ
kψ(t, λ)ψ∗jx(t, λ)] ∀j. (58)

It follows from the definition (17) that this is equivalent to

m∑
i=1

�tn(qi, ri) = Resλ
[
λk�tn(ψ(t, λ), ψ

∗(t, λ))
] ∀n. (59)

Using the explicit expression (35) for�(ψ,ψ∗), one finds:

∂tn

m∑
i=1

�(qi, ri) = ∂tn∂tk logτ ∀n (60)

or:
m∑
i=1

τ�(qi, ri) = τtk (61)

where we have absorbed a possible integration constant in one of the potentials�(qi, ri).
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Considering relation (61) (noting thatτtk is a symmetry), we can say that thek
constrained KP hierarchy is a symmetry reduction of the KP hierarchy (left- and right-
hand sides of relation (61) are symmetries of the KP bilinear identity (8)): there is an
equivalencebetween the constraint (52) and the symmetry reduction (61).

It is quite clear that relation (57) is but the mere secondx derivative of this equation.
We shall see later on how this will make it possible to have a different constraint onL (of
type (52)) still implying relation (57) but not implying relation (61). In [4], it was shown
that there is equivalence between the constraint (52) and the reduction (57) in the case that
the eigenfunctionsq and r satisfy zero-boundary conditions at infinity. The generalized
constraint we shall introduce in section 4 will therefore be adapted to the case of non-
vanishing boundary conditions.

Using theorem 2, we also see from equation (61) that imposing ak constraint on the
KP hierarchy implies that thetk derivative of the KP tau function is a linear combination
of m KP tau functions.

m∑
i=1

τ̂i = τtk . (62)

This is the geometric interpretation of thek constraint (and hence also of the symmetry
constraint) [16, 17]. The corresponding property in the case of the standardk reduction
[7, 8] is thatτtk = Cτ (notice that the standardk reduction is just the caseqi = ri = 0 of
the k constraint and that�(0, 0) = C).

4. A generalized constraint

In this section we shall introduce a generalized constraint for the KP hierarchy. This
constraint has a very similar form when written in terms of a condition on the Lax operator
L. The condition we impose will include a constantc which will be related to the
asymptotic value (at infinity) of the auxiliary fieldsq and r. In fact this new constraint
is particularly well suited to treat systems with non-zero boundary conditions (but where
the fieldu = ∂2

x logτ still has zero-boundary conditions; e.g. solitons of the sech-squared
type). As a very special example we shall be able to derive the dark soliton solutions of the
nonlinear Schr̈odinger equation. Since we are dealing here with a variation of the classical
k constraint, most proofs are simple generalizations (e.g. bilinear form, interpretation as
symmetry constraint). The proof of the explicit solutions is also similar to [10]; however,
we only obtain soliton solutions.

4.1. Definition

A slight variation on thek constraint (52) is the followingc-k constraint:

Lk = Bk + q∂−1r − cL−1 (63)

where c is some, a priori, constant. (It is a well known fact that every (non-zero)
pseudodifferential operator has an inverse, e.g. the inverse ofL is L−1 = ∂−1 − u2∂

−3 +
(u2,x − u3)∂

−4+ · · ·.) Whenc is chosen zero, one recovers the classicalk constraint in the
scalar case (m = 1).

Let us look at the examplek = 1. One finds that (63) implies thatqr = u+ c such that
the t2-time evolutions forq andr become

qt2 = q2x + 2(qr − c)q and − rt2 = r2x + 2(qr − c)r (64)
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which is the nonlinear Schrödinger equation under the conditionq = r∗ andt2→ it2. Since
the fieldu typically vanishes at infinity (e.g. sech squared solitons) one finds that the fields
q andr typically have non-zero (c) boundary conditions at infinity.

4.2. Bilinear forms and connection with symmetry constraints

Let us first look for a bilinear formulation of thisc-k constraint. From the definition
q∂−1r = qr∂−1− qrx∂−2+ qr2x∂−3+ · · · and relation (63), it follows that (j > 0):

Res∂ [(L
k + cL−1)∂j ] = Res∂ [Bk∂

j + q∂−1r∂j ] = (−1)j qrjx (65)

and, using lemma 7.3.2 in [17], one finds:

Resλ[(λ
k + cλ−1)ψ(t, λ)ψ∗jx(t, λ)] = q(t)rjx(t) (66)

and hence:

Resλ[(λ
k + cλ−1)ψ(t, λ)ψ∗(t ′, λ)] = q(t)r(t ′) (67)

or equivalently (q = ρ/τ, r = σ/τ ):

Resλ[(λ
k + cλ−1)τ (t − ε(λ))τ (t ′ + ε(λ))eξ(t−t ′,λ)] = ρ(t)σ (t ′). (68)

These last equations (together with (12) and (14)) form the bilinear representation of thec-k
constraint. One immediate use can be found in proving the existence ofN -soliton solutions
to this generalized constraint (this topic will be addressed in section 4.3).

Let us now look at the links with a possible symmetry constraint. To find such a
corresponding symmetry constraint, we only need to adapt the previous case (c = 0).
Repeating the calculation (58)–(61) for expression (66), one easily finds that equation (63)
is equivalent to:

�tn(q, r) = Resλ[(λ
k + cλ−1)�tn(ψ(t, λ), ψ

∗(t, λ))] ∀n (69)

or

�(q, r) = ∂tk logτ + cx. (70)

Hence we see that the generalized constraint (63) is equivalent to a symmetry constraint
(as seen in section 2, bothτtk andτ(�− cx) are symmetries). Let us stress again that the
generalized constraint (63) also implies the relation (57).

Sinceτ̂ = �τ is a KPτ function, we see thatτ satisfies the additional equation:

Resλ[(τtk (t − ε(λ))+ c(x − λ−1)τ (t − ε(λ)))
×(τtk (t ′ + ε(λ))+ c(x ′ + λ−1)τ (t ′ + ε(λ))) expξ(t − t ′, λ)] = 0 (71)

or:

Resλ

[[
τtk (t − ε(λ)) τtk (t ′ + ε(λ))+ c

(
λ−1+ x

′ − x
2

)
(τtk (t − ε(λ))τ (t ′ + ε(λ))

−τ(t − ε(λ))τtk (t ′ + ε(λ)))+ c2(λ−1(x − x ′)− λ−2)

×τ(t − ε(λ))τ (t ′ + ε(λ))
]

expξ(t − t ′, λ)
]
= 0 (72)

which is an alternative bilinear form for thec-k constraint KP hierarchy (to be taken together
with the bilinear form of the KP equation of course).
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Expressing clearly this equation:

e
∑∞

i=1 yiDi

∞∑
j=0

pj (−2y)[− 1
4pj+1(D̃)D

2
k − cpj (D̃)Dk − cy1pj+1(D̃)Dk

−2c2y1pj (D̃)− c2pj−1(D̃)]ττ = 0 ∀y. (73)

The simplest non-trivial bilinear equation forτ contained in (73) is:

(4D1D3D
2
k − 3D2

2D
2
k −D4

1D
2
k + 16cD3Dk − 16cD3

1Dk − 48c2D2
1)ττ = 0. (74)

Taken together with the bilinear form of the KP equation (10), one finds fork = 1 in the
field v = logτ :

v2t2 − 4cv2x − v4x − 2v2
2x +

v2
3x − v2

x,t2

v2x + 4c
= 0. (75)

This equation was described in [19, 20] where it was called the non-local Boussinesq
equation. Its soliton solutions were found to be ‘pq = c’-reductions of the KPN -soliton
solutions [19]. In the next section we shall show how these results can be generalized to
pk + c/p = qk + c/q reductions.

A bilinear Bäcklund transformation and corresponding Lax pair can also be derived
from relation (72).

4.3. Solutions

Theorem 3.The generalizedk constrained KP hierarchy (defined by condition (63)) gives
the following solutions (q = ρ/τ andr = σ/τ ):

τ = W(ϕ1, . . . , ϕN)

ρ = √cW(ϕ1,x, . . . , ϕN,x)

σ = √cW
(∫ x

ϕ1, . . . ,

∫ x

ϕN

) (76)

whereϕi = ai expξ(t, pi) + bi expξ(t, qi) and with the relationpki + c/pi = qki + c/qi .∫ x
ϕi meansai/pi expξ(t, pi)+ bi/qi expξ(t, qi).

Proof. We will explicitly check the bilinear form (68) for these expressions. The proof is
very similar to the one found in [10]. Sinceϕ satisfiesϕ

tn
= ϕ

nx
one has:

ϕ(t − ε(λ)) = ϕ(t)− λ−1ϕ
x
(t) ϕ(t + ε(λ)) =

∑
n>0

ϕ
nx
(t)λ−n (77)

and hence (see [10] for details)

τ(t − ε(λ)) =
N∑
j=0

(−λ)−j |ϕ, . . . , ϕ
(N−j−1)x

, ϕ
(N−j+1)x

, . . . , ϕ
Nx
|

τ(t + ε(λ)) =
∞∑
n=0

λ−n|ϕ, ϕ
x
, . . . , ϕ

(N−2)x
, ϕ

(N−1+n)x |.
(78)

Substitution into the left-hand side of equation (68) yields (writingϕ′ for ϕ(t ′)):

N∑
j=0

(−1)j
∞∑
n=0

pn(t − t ′)|ϕ′, ϕ′x, . . . , ϕ′(N−2)x
, ϕ′

(N+k−j+n)x |
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×|ϕ, . . . , ϕ
(N−j−1)x

, ϕ
(N−j+1)x

, . . . , ϕ
Nx
|

+c
N∑
j=0

(−1)j
∞∑
n=0

pn(t − t ′)|ϕ′, ϕ′x, . . . , ϕ′(N−2)x
, ϕ′

(N−j−1+n)x |

×|ϕ, . . . , ϕ
(N−j−1)x

, ϕ
(N−j+1)x

, . . . , ϕ
Nx
|. (79)

Since:
∞∑
n=0

pn(t − t ′)∂nx ϕ′(N+k−j)x = ϕ(N+k−j)x(t)
∞∑

n=0,N−j−1+n>0

pn(t − t ′)∂nx ϕ′(N−j−1)x
= (∂−1

x ϕ)(N−j)x − δNj (∂−1
x ϕ′)

(80)

expression (79) becomes:

N∑
j=0

(−1)j |ϕ′, ϕ′
x
, . . . , ϕ′

(N−2)x
, (ϕ

(N+k−j)x + cϕ(N−j−1)x
− cδjN∂−1

x ϕ′)|

×|ϕ, . . . , ϕ
(N−j−1)x

, ϕ
(N−j+1)x

, . . . , ϕ
Nx
| (81)

which equals:

(−1)N+1c|ϕ
x
ϕ

2x
, . . . , ϕ

Nx
||ϕ′, ϕ′

x
, . . . , ϕ′

(N−2)x
, ∂−1
x ϕ′)| + |ϕ′, ϕ′

x
, . . . , ϕ′

(N−2)x
, φ|. (82)

The first term in (82) is justρ(t)σ (t ′), the second term contains the column vectorφ which
is defined by:

φi ≡
N∑
j=0

(−1)j (ϕi,(N+k−j)x + c∂−1
x ϕi,(N−j)x)|ϕ, . . . , ϕ(N−j−1)x

, ϕ
(N−j+1)x

, . . . , ϕ
Nx
|. (83)

Since ∂kxϕi,(N−j)x + c∂−1
x ϕi,(N−j)x) = (pki + cp−1

i )ϕi,(N−j)x , we find from (83) thatφi =
(pki + cp−1

i )W(ϕ1, ϕ2, . . . , ϕN, ϕi) = 0. This proves the theorem. �
A similar result can be obtained using a Darboux transformation [5, 16], starting from

the trivial caseτ = 1, q = 1 andr = c. Notice that the conditionpki + c/pi = qki + c/qi
becomes(pi−qi)(piqi−c) = 0 whenk = 1. Clearly this reduces to thepiqi = c reduction
[20, 21].

For determinants of typeτ = W(ϕ1, . . . , ϕN), ρ = √cW(ϕ1,x, . . . , ϕN,x), σ =√
cW(

∫ x
ϕ1, . . . ,

∫ x
ϕN) (for anyϕi) one can computêτ :

τ̂ = cxτ − cτ̃ + Cτ (84)

whereτ̃ = det[
∫ x
ϕ, ϕ

x
, . . . , ϕ

(N−1)x
]. In this case condition (70) becomes:

τtk = −cτ̃ + Cτ. (85)

5. Conclusions

We have examined the interpretation of the (m-vector) k constrained KP hierarchies as
symmetry reductions on the KP hierarchy. It was found that in order to get unambiguous
results, one needs to investigate their connection in terms of tau functions. The link between
constraints and symmetry reductions was also found to be closely connected to a geometrical
interpretation of these reductions.
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In the last section, we proposed a generalization of thek constraint (only in the scalar
case), allowing for reduced systems permittingN -soliton solutions with non-zero boundary
conditions in the fieldsq andr (namelyc ana priori introduced constant). An open question
in this respect is the existence (in general) of rational solutions for these reductions and
solutions to them vector case (m > 1).

This generalized constraint (in the casek = 1) is closely linked to the so-called
pq = c reduction of the KP hierarchy. Hence the generalized 1-constraint is closely
linked to the non-local Boussinesq hierarchy [19, 20]. For other values ofk, we have a
pk + c/p = qk + c/q reduction.

This c-k constraint can also be interpreted as a symmetry constraint and has an
accompanying geometrical interpretation for its tau function. From this property, an
additional bilinear identity for the tau function of this hierarchy was easily derived.

Proving these results was achieved by using a squared eigenfunction potential method
(recently introduced in [6]).
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